Manifolds With Many Hyperbolic Planes

نویسندگان

  • Samuel Lin
  • Benjamin Schmidt
  • BENJAMIN SCHMIDT
چکیده

We construct examples of complete Riemannian manifolds having the property that every geodesic lies in a totally geodesic hyperbolic plane. Despite the abundance of totally geodesic hyperbolic planes, these examples are not locally homogenous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic planes in the convex core of an acylindrical 3-manifold

Let M be a convex cocompact, acylindrical hyperbolic 3-manifold of infinite volume, and let M∗ denote the interior of the convex core of M . In this paper we show that any geodesic plane inM∗ is either closed or dense. We also show that only countably many planes are closed. These are the first rigidity theorems for planes in convex cocompact 3-manifolds of infinite volume that depend only on t...

متن کامل

Geodesic planes in hyperbolic 3-manifolds

In this talk we discuss the possible closures of geodesic planes in a hyperbolic 3-manifold M. When M has finite volume Shah and Ratner (independently) showed that a very strong rigidity phenomenon holds, and in particular such closures are always properly immersed submanifolds of M with finite area. Manifolds with infinite volume, however, are far less understood and are the main subject of th...

متن کامل

Hyperbolic Twistor Spaces

In contrast to the classical twistor spaces whose fibres are 2-spheres, we introduce twistor spaces over manifolds with almost quaternionic structures of the second kind in the sense of P. Libermann whose fibres are hyperbolic planes. We discuss two natural almost complex structures on such a twistor space and their holomorphic functions. Mathematics Subject Classification (2000). 53C28, 32L25,...

متن کامل

Almost-minimal Nonuniform Lattices of Higher Rank

(2) the product H × H of 2 hyperbolic planes. In short, among all the symmetric spaces of noncompact type with rank ≥ 2, there are only two manifolds that are minimal with respect to the partial order defined by totally geodesic embeddings. Our main theorem provides an analogue of this result for noncompact finitevolume spaces that are locally symmetric, rather than globally symmetric, but, in ...

متن کامل

Non-simple Geodesics in Hyperbolic 3-manifolds

Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016